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Statement of the problem
A scale/resolution problem

Micro scale (cm-m):
Discontinuities (joints, layers, fractures, 
faults).
Filling material estimation.
Discontinuities network (links, favourite 
water/fluid directions,…).
Voids (Karstic phenomena, open 
fractures,…).
Vertical and lateral lithological variations.

Macro scale (m-km): 
“Global” rock mass characteristics.
Homogeneity zones (from geological,
hydrogeological, geomechanical point of 
view).
Main discontinuities (large faults, 
bedrock).

Voids (caverns, tunnels).
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Summary
Objectives
Imaging of rock mass characteristics (joints, fractures, voids, internal 
structures and heterogeneous volumes)
3D patterns reconstruction
Definition of rock mass homogeneity zones

Methods
- SURFACE and BOREHOLE GPR
- SEISMICS: Multi channel Analysis of Surface Waves - MASW

Conclusions - Remarks

1) Imaging of rock discontinuities
2) Imaging of lithologic variation
3) Definition of different rock mass parameters
4) Geomechanical – hydrogeological problem assessment

Results
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GPR INTERPRETATION:
Layering, fractures, faults and cavities
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Precise geological attitude
determination:
• strike
• dip
• direction of dip

… and local variations
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GPR interpretation and validation



3D discontinuities reconstruction
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Surface GPR Constrains and Limits
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1. Maximum reachable penetration depth (high conductivity
sediments on surface)

2. Good definition of single rock discontinuities but  poor
information on “global” rock mass characteristics

3. Resolution and imaging limits for:
- very thin fractures (virtually no electromagnetic contrast)
- vertical/sub-vertical discontinuities

To overcome some of these limits… GPR tomography
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Borehole Borehole GPR GPR measurementsmeasurements: : TomographyTomography
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AA BoreholeBorehole GPR GPR Tomography exampleTomography example

Azimuth=84°
Dip=50°
Depth= 15.5m

BOREHOLE 1

BOREHOLE 2
Azimuth=260°
Dip=68°
Depth= 20m

Boreholes Location Map

Geological settings:
Grey or blackish limestone, with laminithic levels
characterised by different organic material content.
Presence of fractures locally with karstic phenomena and vertebrate
fossils.
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GPR tomography

acquisition scheme:
Tx increment = 50cm
Rx increment = 10cm 
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AA BoreholeBorehole GPR GPR Tomography exampleTomography example



First break picking Traveltime inversion velocity
Amplitude inversion attenuation
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AA BoreholeBorehole GPR GPR Tomography exampleTomography example
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AA BoreholeBorehole GPR GPR Tomography exampleTomography example

Borehole-2Borehole-1

Velocity
[mm/ns]Velocity Field

∼12cm/ns

∼9cm/ns

Borehole-1
Borehole-2

Attenuation field Attenuation
Db/m

∼20Db/m

∼6Db/m
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AA BoreholeBorehole GPR GPR Tomography exampleTomography example

Ground surface



An integrated approach: seismic
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MAIN OBJECTIVE:

Definition of “global” rock mass parameters useful for geological,
hydrogeological, geomechanical, environmental problems

Which method?
Refraction – Reflection

Borehole – Tomography – 2D – 3D – P waves – S waves

…or more?



Why surface waves?
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1. The percentage of energy converted into Rayleigh waves is 
by far higher (67%) with respect to the energy involved in the 
P (7%) and S (26%) wave generation

2. Surface wave amplitude depends on    and not on r (body 
waves)

r
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3. Differently than the refraction method, surface wave 
analysis does not suffer for limitations due to the presence 
of possible velocity inversions

7. Low overall costs

4. Rayleigh wave velocity is mainly influenced by the shear 
wave velocity – fundamental parameter for many 
geomechanical/geotechnical analyses

Why surface waves?

5. Applicable also with low impedance contrasts

6. Very simple acquisition and pre-processing required

8. No “a-priori” constrains



MASW: Two steps
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1. Dispersion curve picking

2. Dispersion curve inversion



A new implemented program

M Pipan M., Forte E., Dal Moro G. and Gabrielli P.
Near Surface 2005

Velocity spectrum
determination

Dispersion Curves
inversion



24 traces, bandpass filtered (0-3-50-70 Hz) and offset balanced 
Common-shot gather

Dispersion curves determination and picking
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F-K τ-p Phase ShiftPrincipal
mode Higher modes

A Phase Shift method was selected and applied to data according to an adopted velocity.
A sum is then performed for each considered frequency 

(see e. g. Park et al., 1998, SEG, Expanded Abstracts, 1377-1380)



Dispersion curves inversion
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Main problem: it is a multi-modal problem and common linear 
methods typically strongly depend on the initial model

It is a global search tool able to explore a wide search space and exploit the 
obtained information starting with very low constrains and required assumptions.

The algorithm can identify a mean model (and not only the “last” model) and 
calculates the standard deviations for each considered variable.

For further details see e.g.:
• Xia J., et al., 2004. Utilization of High-Frequency Rayleigh Waves in Near-Surface Geophysics,  

The Leading Edge, Vol. 23, No. 8, 753-759.
• Dal Moro G., et al., 2005. Rayleigh Wave Dispersion Curve Inversion via Genetic Algorithms and 

Marginal Posterior Probability Density Estimation, submitted to the Journal of Applied Geophysics.

Genetic Algorithms for Surface Wave Inversion
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Dispersion curves inversion: parameters
Fixing boundaries of the search space for all the chosen variables

Velocity range

Number of strata

Population number
Generation number
Crossover rate
Mutation rate

All these parameters can be set as wide as possible. 
The only limitation to reach the “final” model is the 

request CPU-TIME
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SHOT 1 SHOT 12

Search space

Dispersion curves inversion
The inversion procedure is performed on several close seismic shots

Mean (best reliable) velocity
model for Shot-1

Mean (best reliable) velocity
model for Shot-12



MASW-reflection seismic comparison and validation 
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Conclusions - Remarks
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Geophysisics can give important information with 
different scale levels that are very difficult to achieve 

with direct methods.

GPR profiles and borehole tomography allow unambiguous high resolution 
2D and 3D imaging of bedding planes, fractures, joints and cavities also 
in complex environments.
This techniques are particularly efficient if performed with antennas 
directly coupled with the rock surface and with a required penetration 
depth not exceeding 20-30m or a similar distance between boreholes.
In order to overcome this constrain, and to assess some “global” rock 
mass parameters Seismic MASW techniques can be very useful in terms 
of costs and reliability of results.
Further efforts are required to obtain more detailed quantitative 
information.
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