# Structural aquifer mapping using transient electromagnetic methods

Esben Auken, Anders V. Christiansen And Kurt I. Sørensen

HydroGeophysics Group Department of Earth Sciences, University of Aarhus, www.hgg.au.dk

## Outline

- *a* How does the transient method work?
- ¿ Strengths and limitations
- a Transient systems
- ¿ Structural/lithological mapping a survey
- ¿ Concluding remarks

# **Basics Physics of TEM**

#### How does it work?

A stationary current flows in the transmitter loop -which sets up a primary magnetic field The current is shut off abruptly

-which induces currents in the subsurface.

This generates a secondary magnetic field

-which is measured in the receiver coil at the surface



# **Basics Physics of TEM**

- a The magnitude of the Earth response dependent on the subsurface resistivity
- - power distribution grid
  - distant thunderstorms
- ¿ Largest penetration depth
  - background noise level
  - magnetic transmitter moment
- ¿ Near surface resolution
  - timing and instrument accuracy
  - accurate modeling of system response

# Outline

- ¿ How does the transient method work?
- ¿ Strengths and limitations
- ¿ Transient systems
- 2 Structural/lithological mapping a survey
- ¿ Concluding Remarks

#### **TEM Method – Strengths and Limitations**

- High production rate +
- Sensitive to low resistivity sediments clay or salt water interfaces +
- Large depth of penetration +
- Limited sensitivity to non 1-D conditions +
- Conceptually advanced
- Sensitive to coupling to power lines, buried cables, fences etc.
- Only 1-D inversion is available at present state

10-3

 $10^{-2}$ 





## **Ground-based Versus Airborne Systems**

#### **Ground-based**

- Low daily production
- Requires ground access
- + Cost effective in small areas
- + Early time measurements most systems
- Small transmitter moment
- Single site measurements
- Couplings difficult to recognize

#### <u>Airborne</u>

- + High daily production
- + No ground access
- + Cost effective in large areas
- Early times measurements only some systems
- + Large transmitter moment
- + Continuous measurements
- + Easy to cull couplings

#### Conventional Ground-based 40 x 40 m TEM

- a Magnetic moment: 4800 Am<sup>2</sup>
- 2 16 soundings per day 1 km<sup>2</sup>
- ¿ Sounding distance: 250 m
- ¿ Penetration: 100 150 m







# SkyTEM at a Glance

- ¿ Low moment near-surface resolution
  - 12 000 Am2
  - Turn off ~ 5 µs
  - x- and z-component
- a High moment large penetration
  - 90 000 Am2
  - Turn off ~ 38 µs
  - z-component
- ¿ First time gate
  - structural mapping ~16 µs
  - vulnerability mapping ~11 µs
- <sup>2</sup> Operating altitude ~30 m
- 2 Speed up to 70 km/hr



#### Data Processing and Inversion

- a Navigation altitude and tilt
  - Altitude recursive canopy filters
  - Tilt correction of altitudes and db/dt data
- ¿ No leveling
- a Noise and coupled db/dt data are culled before inversion
- a Laterally Constrained Inversion (LCI) models
  - Low-pass filters, front gate, turn-on and turn-off exponential ramps
  - Altitude as constrained parameter

# Outline

- ¿ How does the transient method work?
- ¿ Strengths and limitations
- : Transient systems
- ¿ Structural/lithological mapping a survey
- ¿ Concluding Remarks



# The survey area



#### Flight Lines – Sounding Points



#### **Location of Cross Section**



#### **Cross Section**









#### Cross Section – Top Clay





# Top Clay







#### **Cross Section – Top Limestone**





## **Top Limestone**



| TopLimeStone4_G_GI |      |      |     |     |     |     |   |    |   |
|--------------------|------|------|-----|-----|-----|-----|---|----|---|
|                    |      |      |     |     |     |     |   |    |   |
|                    |      |      |     |     |     |     |   |    |   |
| -140               | -120 | -100 | -80 | -60 | -40 | -20 | 0 | 20 | - |
| Elevation [m]      |      |      |     |     |     |     |   |    |   |









# Average Resistivity 30 – 50 m

C Profile: P4

1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400

L: 1.14e+02

2000 4000 4200 4400 4000 4000 5000 5200 5400





# Average Resistivity 10 – 30 m

Profile: Pd

Elevation 10 -

1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400

L: 1.14e+02

4000 4200 4400 4600





## Average Resistivity -10 – 10 m

Profile: Pd

Elevation -10

1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400

L: 1.14e+02

4000 4200 4400 4600





## Average Resistivity -50 – -30 m

Profile: P.

Elevation -30

1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400

L: 1.14e+02





# 3D View – Flight Path





# **3D View of the Buried Valley**



# **Concluding Remarks**

- The transient method is in steady development and is one of the strongest tools for hydrogeophysical investigations
- a New airborne systems gives data of the same quality as obtained on the ground
- New processing and inversion algorithms are developed for accurate modeling of the TEM systems – gives greatly improved geological models

## 3D View – Mapping the Surface of the Clay

